MASS IN SPACE

Words	Stage Directions
Have you ever looked up and wondered how scientist know how big these	S1: Have a picture of the night sky and
tiny looking objects are? Well you are about to find out.	circle one star
Planets and other celestial bodies are usually described in terms of their	S2: One planet with dots inside and
mass. Mass is a measurement of the amount of material that an object	another planet of a different size with
contains.	dots inside
On Earth, you can use a gravitational balance to determine the mass in	S3: Picture of a triple balance on earth
kilograms (and many have done this in science when using a triple beam	
balance).	
But what about space?	S3: Question marks outside Earth
Astronomers use the gravitational interaction between planets to calculate	S4: Two planets and draw arrows pointing
the mass of celestial bodies like planets.	away from each meeting in the middle
Isaac Newton first described the force of gravity between the Earth and	S5: Picture of Isaac Newton
other objects with an equation that he found from	
observing the acceleration of the moon compared to that of an object on	S5: Add moon and then an apple
Earth, deeming both to be caused by the force of gravity.	and appro
Then, he applied this formula to objects not on Earth. Now called Newton's	S5: write "Newton's Law of Universal
Law of Universal Gravitation,	Gravitation"
this relationship describes the force of gravity acting between two objects	S6: Under Law write "F" and "proportional
as directly proportional to the mass of both objects and inversely	(mass1*mass2)/d^2"
proportional to the square of the distance that separates the centers of the	
objects.	

But the relationship described is still just a proportion, it can't give us exact	S9: Have proportion
measurements. So what do we do?	and underline proportional symbol
Multiply by a constant of proportionality! YAY!	S9: write "(G)" by the proportional
In this case, the constant of proportionality is called the universal	S9 -to the right: write "G" and write
gravitational constant	underneath "universal gravitational constant"
and it was determined in a series of experiments by Henry Cavendish in the	S9-P1: picture of Henry Cavendish
18 th Century after Newton's death.	
He determined that the universal gravitational constant is 6.673 x 10^(-11)	S9 -to the right: by "G" write "= 6.673*10^(-
Newtons times (meters^2)/kilograms^2).	11) N*m^2/kg^2"
Then, scientists use the Law of Universal Gravitation to determine the mass	S9 -center: picture of Earth
of the Earth	
by comparing the Earth at its center	S9 -center: dot at center of Earth
to the Earth at the edge of its crust.	S9 -center: dot at edge of Earth
This means that the distance is the radius of the Earth.	S9 -center: line between two dots and label r
Let's look at the Law of Universal Gravitation when we are comparing the	
Earth to itself and substitute in all the values we currently know.	
The original equation is F (for the force of gravity) is equal to G (the	S9: write "F=G*m1*m2/d^2" in
universal gravitational constant) times mass one times mass two all divided	center
by d (the distance between the center of the objects) squared.	
We know that G is 6.67*10^(-11) Newtons*meters^2/kilograms^2.	\$9: write "F=6.67*10^(- 11)N*m^2/kg^2"
The mass of the Earth is constant, so we know that mass 1 equals mass 2	S9-to the left: write "m1 = m2"
so we can substitute (m1)^2 in for mass1*mass2.	\$9: write "(m1)^2"

We can also substitute 6.371*10^6 m for the distance since that's the	S9: write
	"/(6.371*10^6 m)^2"
radius of the Earth.	
But we still can't solve for the mass because we don't know what the Force	S9: circle F then erase
is. Or do we?	
We know that the Force (F) is also equal to mass*acceleration.	S9-to the left: write
()	"F=mass*acceleration"
So we can substitute mass1*a (acceleration) for F.	S9: rewrite equation
a (acceleration) for the	as "m1*a= right side"
We also know that the acceleration of any object on Earth is 9.8 meters per	S9: rewrite equation
we also know that the acceleration of any object on Larth is 5.8 meters per	with a = "9.8 m/s^2"
second square, so we nut this in for a	with a = 9.8 m/s ⁻¹ 2
second square, so we put this in for a.	
Now the only unknown is the mass! Let's take a second and solve this for	
mass and determine what the units are using some easy algebra.	
	S9: solve the equation.
We have found that the mass of the earth is about 5.963*10^(24) kilograms	S9: circle the answer.
It is approximate because all of our measurements are approximations. If	S10: NASA
you want to know how accurate we are, NASA says	
that the earth is 5.972*10^(24) kilograms.	S10: draw an arrow
, , , ,	write "5.972*10^(24)"
Now that we have the mass of the Earth	S11-P1: picture of the
Now that we have the mass of the Earth	Earth
we can find the mass of the Sun.	S11-P2: picture of the
we can find the mass of the sun.	Sun next to the Earth
They with the Control on find the mass of any planet in our color over the	
Then with the Sun we can find the mass of any planet in our solar system.	S11-P3: picture of the
	Planets next to the
	Sun
This same equation can find the mass of our solar system itself,	S11-P4: picture of our
	solar system
or the mass of our galaxy.	S11-P5: picture of our
	galaxy
Or the mass of any galaxy.	S11-P6: picture of
	multiple galaxies
That's one powerful equation.	S11: write general
	equation underneath
	picture of galaxies
	I Stand of Garden